Close Menu
RoboNewsWire – Latest Insights on AI, Robotics, Crypto and Tech Innovations
  • Home
  • AI
  • Crypto
  • Cybersecurity
  • IT
  • Energy
  • Robotics
  • TechCrunch
  • Technology
What's Hot

Anduril raises $2.5B at $30.5B valuation led by Founders Fund

June 6, 2025

DocuSign stock tanks 18% after company cuts billings outlook

June 6, 2025

X tests highlighting posts that are liked by users with opposing views

June 6, 2025
Facebook X (Twitter) Instagram
Trending
  • Anduril raises $2.5B at $30.5B valuation led by Founders Fund
  • DocuSign stock tanks 18% after company cuts billings outlook
  • X tests highlighting posts that are liked by users with opposing views
  • Bonfire’s new software lets users build their own social communities, free from platform control
  • Reddit sues Anthropic over AI data scraping
  • Anthropic co-founder on cutting access to Windsurf: ‘It would be odd for us to sell Claude to OpenAI’
  • Rippling calls Deel ‘a criminal syndicate’ and claims 4 other competitors were spied on, too
  • Walmart and Wing expand drone delivery to five more US cities
  • Home
  • About Us
  • Advertise
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
Facebook X (Twitter) Instagram
RoboNewsWire – Latest Insights on AI, Robotics, Crypto and Tech InnovationsRoboNewsWire – Latest Insights on AI, Robotics, Crypto and Tech Innovations
Friday, June 6
  • Home
  • AI
  • Crypto
  • Cybersecurity
  • IT
  • Energy
  • Robotics
  • TechCrunch
  • Technology
RoboNewsWire – Latest Insights on AI, Robotics, Crypto and Tech Innovations
Home » New system enables robots to solve manipulation problems in seconds | MIT News

New system enables robots to solve manipulation problems in seconds | MIT News

GTBy GTJune 5, 2025 Robotics No Comments6 Mins Read
Share
Facebook Twitter LinkedIn Pinterest Email


Ready for that long-awaited summer vacation? First, you’ll need to pack all items required for your trip into a suitcase, making sure everything fits securely without crushing anything fragile.

Because humans possess strong visual and geometric reasoning skills, this is usually a straightforward problem, even if it may take a bit of finagling to squeeze everything in.

To a robot, though, it is an extremely complex planning challenge that requires thinking simultaneously about many actions, constraints, and mechanical capabilities. Finding an effective solution could take the robot a very long time — if it can even come up with one.

Researchers from MIT and NVIDIA Research have developed a novel algorithm that dramatically speeds up the robot’s planning process. Their approach enables a robot to “think ahead” by evaluating thousands of possible solutions in parallel and then refining the best ones to meet the constraints of the robot and its environment.

Instead of testing each potential action one at a time, like many existing approaches, this new method considers thousands of actions simultaneously, solving multistep manipulation problems in a matter of seconds.

The researchers harness the massive computational power of specialized processors called graphics processing units (GPUs) to enable this speedup.

In a factory or warehouse, their technique could enable robots to rapidly determine how to manipulate and tightly pack items that have different shapes and sizes without damaging them, knocking anything over, or colliding with obstacles, even in a narrow space.

“This would be very helpful in industrial settings where time really does matter and you need to find an effective solution as fast as possible. If your algorithm takes minutes to find a plan, as opposed to seconds, that costs the business money,” says MIT graduate student William Shen SM ’23, lead author of the paper on this technique.

He is joined on the paper by Caelan Garrett ’15, MEng ’15, PhD ’21, a senior research scientist at NVIDIA Research; Nishanth Kumar, an MIT graduate student; Ankit Goyal, a NVIDIA research scientist; Tucker Hermans, a NVIDIA research scientist and associate professor at the University of Utah; Leslie Pack Kaelbling, the Panasonic Professor of Computer Science and Engineering at MIT and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL); Tomás Lozano-Pérez, an MIT professor of computer science and engineering and a member of CSAIL; and Fabio Ramos, principal research scientist at NVIDIA and a professor at the University of Sydney. The research will be presented at the Robotics: Science and Systems Conference.

Planning in parallel

The researchers’ algorithm is designed for what is called task and motion planning (TAMP). The goal of a TAMP algorithm is to come up with a task plan for a robot, which is a high-level sequence of actions, along with a motion plan, which includes low-level action parameters, like joint positions and gripper orientation, that complete that high-level plan.

To create a plan for packing items in a box, a robot needs to reason about many variables, such as the final orientation of packed objects so they fit together, as well as how it is going to pick them up and manipulate them using its arm and gripper.

It must do this while determining how to avoid collisions and achieve any user-specified constraints, such as a certain order in which to pack items.

With so many potential sequences of actions, sampling possible solutions at random and trying one at a time could take an extremely long time.

“It is a very large search space, and a lot of actions the robot does in that space don’t actually achieve anything productive,” Garrett adds.

Instead, the researchers’ algorithm, called cuTAMP, which is accelerated using a parallel computing platform called CUDA, simulates and refines thousands of solutions in parallel. It does this by combining two techniques, sampling and optimization.

Sampling involves choosing a solution to try. But rather than sampling solutions randomly, cuTAMP limits the range of potential solutions to those most likely to satisfy the problem’s constraints. This modified sampling procedure allows cuTAMP to broadly explore potential solutions while narrowing down the sampling space.

“Once we combine the outputs of these samples, we get a much better starting point than if we sampled randomly. This ensures we can find solutions more quickly during optimization,” Shen says.

Once cuTAMP has generated that set of samples, it performs a parallelized optimization procedure that computes a cost, which corresponds to how well each sample avoids collisions and satisfies the motion constraints of the robot, as well as any user-defined objectives.

It updates the samples in parallel, chooses the best candidates, and repeats the process until it narrows them down to a successful solution.

Harnessing accelerated computing

The researchers leverage GPUs, specialized processors that are far more powerful for parallel computation and workloads than general-purpose CPUs, to scale up the number of solutions they can sample and optimize simultaneously. This maximized the performance of their algorithm.

“Using GPUs, the computational cost of optimizing one solution is the same as optimizing hundreds or thousands of solutions,” Shen explains.

When they tested their approach on Tetris-like packing challenges in simulation, cuTAMP took only a few seconds to find successful, collision-free plans that might take sequential planning approaches much longer to solve.

And when deployed on a real robotic arm, the algorithm always found a solution in under 30 seconds.

The system works across robots and has been tested on a robotic arm at MIT and a humanoid robot at NVIDIA. Since cuTAMP is not a machine-learning algorithm, it requires no training data, which could enable it to be readily deployed in many situations.

“You can give it a brand-new problem and it will provably solve it,” Garrett says.

The algorithm is generalizable to situations beyond packing, like a robot using tools. A user could incorporate different skill types into the system to expand a robot’s capabilities automatically.

In the future, the researchers want to leverage large language models and vision language models within cuTAMP, enabling a robot to formulate and execute a plan that achieves specific objectives based on voice commands from a user.

This work is supported, in part, by the National Science Foundation (NSF), Air Force Office for Scientific Research, Office of Naval Research, MIT Quest for Intelligence, NVIDIA, and the Robotics and Artificial Intelligence Institute.



Source link

GT
  • Website

Keep Reading

Imaging technique removes the effect of water in underwater scenes | MIT News

Eldercare robot helps people sit and stand, and catches them if they fall | MIT News

System lets robots identify an object’s properties through handling | MIT News

Ping pong bot returns shots with high-speed precision | MIT News

Merging design and computer science in creative ways | MIT News

Robotic system zeroes in on objects most relevant for helping humans | MIT News

Add A Comment
Leave A Reply Cancel Reply

Editors Picks

DocuSign stock tanks 18% after company cuts billings outlook

June 6, 2025

Omada Health prices IPO at $19 per share, in middle of expected range

June 6, 2025

Amazon’s R&D lab forms new agentic AI group

June 4, 2025

FBI says Palm Springs bombing suspects used AI chat program

June 4, 2025
Latest Posts

Healthcare Cyber Attacks – 276 Million Patient Records were Compromised In 2024

May 15, 2025

Hackers Launching Cyber Attacks Targeting Multiple Schools & Universities in New Mexico

May 6, 2025

Over 90% of Cybersecurity Leaders Worldwide Encountered Cyberattacks Targeting Cloud Environments

May 1, 2025

Subscribe to News

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Welcome to RoboNewsWire, your trusted source for cutting-edge news and insights in the world of technology. We are dedicated to providing timely and accurate information on the most important trends shaping the future across multiple sectors. Our mission is to keep you informed and ahead of the curve with deep dives, expert analysis, and the latest updates in key industries that are transforming the world.

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

Facebook X (Twitter) Instagram
  • Home
  • About Us
  • Advertise
  • Contact Us
  • DMCA
  • Privacy Policy
  • Terms & Conditions
© 2025 Robonewswire. Designed by robonewswire.

Type above and press Enter to search. Press Esc to cancel.

STEAM Education

At FutureBots, we believe the future belongs to creators, thinkers, and problem-solvers. That’s why we’ve made it our mission to provide high-quality STEM products designed to inspire curiosity, spark innovation, and empower learners of all ages to shape the world through robotics and technology.